Heteronuclear 2D NMR studies of an engineered insulin monomer: assignment and characterization of the receptor-binding surface by selective deuterium and carbon-13 labeling with application to protein design
- 30 July 1991
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 30 (30) , 7373-7389
- https://doi.org/10.1021/bi00244a004
Abstract
Insulin provides an important model for the application of genetic engineering to rational protein design and has been well characterized in the crystal state. However, self-association of insulin in solution has precluded complementary 2D NMR study under physiological conditions. We demonstrate here that such limitations may be circumvented by the use of a monomeric analogue that contains three amino acid substitutions on the protein surface (HisB10----Asp, ProB28----Lys, and LysB29----Pro); this analogue (designated DKP-insulin) retains native receptor-binding potency. Comparative 1H NMR studies of native human insulin and a series of three related analogues--(i) the singly substituted analogue [HisB10----Asp], (ii) the doubly substituted analogue [ProB28----Lys; LysB29----Pro], and (iii) DKP-insulin--demonstrate progressive reduction in concentration-dependent line-broadening in accord with the results of analytical ultracentrifugation. Extensive nonlocal interactions are observed in the NOESY spectrum of DKP-insulin, indicating that this analogue adopts a compact and stably folded structure as a monomer in overall accord with crystal models. Site-specific 2H and 13C isotopic labels are introduced by semisynthesis as probes for the structure and dynamics of the receptor-binding surface. These studies confirm and extend under physiological conditions the results of a previous 2D NMR analysis of native insulin in 20% acetic acid [Hua, Q. X., & Weiss, M. A. (1991) Biochemistry 30, 5505-5515]. Implications for the role of protein flexibility in receptor recognition are discussed with application to the design of novel insulin analogues.Keywords
This publication has 0 references indexed in Scilit: