Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations

Abstract
This paper is concerned with regularizing effects of solutions to the (generalized) Korteweg-de Vries equation \begin{cases} ∂_{t}u + ∂_{x}^{3}u =\lambda u^{p−1}∂_{x}u, & (t,x) \in ℝ \times ℝ, \\ u(0) = \phi , & x \in ℝ, & \end{cases} and nonlinear Schrödinger equations in one space dimension \begin{cases} i∂_{t}u + \frac{1}{2}∂_{x}^{2}u = G\left(u,\bar u\right), &(t,x) \in ℝ \times ℝ, \\ u(0) = \psi ,& x \in ℝ, \end{cases} where p is an integer satisfying p ≥ 2 , λ \in ℂ and G is a polynomial of \left(u,\bar u\right) . We prove that if the initial function ϕ is in a Gevrey class of order 3 defined in Section 1, then there exists a positive time T such that the solution of (gKdV) is analytic in space variable for t \in [−T, T]\backslash \{0\} , and if the initial function ψ in a Gevrey class of order 2, then there exists a positive time T such that the solution of (NLS) is analytic in space variable for t \in [−T, T]\backslash \{0\} . Résumé: Nous étudions, dans cet article, certains effets régularisants pour les solutions de l’équation de Korteweg-de Vries (généralisée) \begin{cases} ∂_{t}u + ∂_{x}^{3}u =\lambda u^{p−1}∂_{x}u, & (t,x) \in ℝ \times ℝ, \\ u(0) = \phi , & x \in ℝ, & \end{cases} et des équations de Schrödinger monodimensionnelles \begin{cases} i∂_{t}u + \frac{1}{2}∂_{x}^{2}u = G\left(u,\bar u\right), &(t,x) \in ℝ \times ℝ, \\ u(0) = \psi ,& x \in ℝ, \end{cases} où p est un entier supérieur ou égal à 2, λ ∈ ℂ et G est un polynôme en (u,\bar u) . Nous montrons que, lorsque la donnée initiale ϕ appartient à la classe de Gevrey définie dans la première partie, il existe un temps T tel que la solution de (gKdV) est analytique en espace pour t \in [−T, T]\backslash \{0\} ; de même, lorsque la donnée initiale ψ appartient à une certaine classe de Gevrey d’ordre 2, il existe un temps T tel que la solution de (NLS) est analytique en espace pour t \in [−T, T]\backslash \{0\} .

This publication has 15 references indexed in Scilit: