Abstract
A primitive equation regional model is used to study the effects of surface and lateral forcing on the variability and the climatology of the Gulf Stream system. The model is an eddy-resolving, coastal ocean model that includes thermohaline dynamics and a second-order turbulence closure scheme to provide vertical mixing. The surface forcing consists of wind stroll and beat fluxes obtained from the Comprehensive Ocean-Atmosphere Data Set (COADS). Sensitivity studies am performed by driving the model with different forcing (e.g., annual versus zero surface forcing or monthly versus annual forcing). The model climatology, obtained from a five-year simulation of each case, is then compared to observed climatologies obtained from satellite-derived SST and hydrocast data. The experiments in which surface best flux and wind stress were neglected show less realistic Gulf Stream separation and variability, compared with experiments in which annual or seasonal forcing are used. A similar unrealistic Gulf S... Abstract A primitive equation regional model is used to study the effects of surface and lateral forcing on the variability and the climatology of the Gulf Stream system. The model is an eddy-resolving, coastal ocean model that includes thermohaline dynamics and a second-order turbulence closure scheme to provide vertical mixing. The surface forcing consists of wind stroll and beat fluxes obtained from the Comprehensive Ocean-Atmosphere Data Set (COADS). Sensitivity studies am performed by driving the model with different forcing (e.g., annual versus zero surface forcing or monthly versus annual forcing). The model climatology, obtained from a five-year simulation of each case, is then compared to observed climatologies obtained from satellite-derived SST and hydrocast data. The experiments in which surface best flux and wind stress were neglected show less realistic Gulf Stream separation and variability, compared with experiments in which annual or seasonal forcing are used. A similar unrealistic Gulf S...