INDUCTION OF DIFFERENTIATION OF HUMAN PROMYELOCYTIC LEUKEMIA-CELLS (HL60) BY METABOLITES OF HEXAMETHYLENE BISACETAMIDE
- 1 July 1988
- journal article
- research article
- Vol. 48 (13) , 3613-3616
Abstract
We studied the ability of five metabolites of hexamehtylene bisacetamide (HMBA), which we had previously identified in patient urine, to induce differentiation or to influence differentiation induced by HMBA of a human promyelocytic cellline. Differentiation of HL60 cells was quantified by morphological changes and by the ability to reduce nitroblue tetrazolium. N-Acetyl-1,6-diaminohexane (NADAH), the deacetylated, first metabolite of HMBA, was a more potent inducer of HL60 differentiation than was HMBA. NADAH produced 20-30% differentiation at 0.25 mM and 30-40% differentiation at 0.5 mM. NADAH (1 mM) induced 2-3-fold more differentiation than did 1 mM HMBA. HL60 differentiation, induced by various combinations of HMBA and NADAH, reflected a combined effect of the two compounds. In contrast, 1,6-diaminohexane, at 0.5-5 mM, failed to induce HL60 differentiation. Similarly, 0.5-5 mM 6-acetamidohexanoic acid, the major metabolite of HMBA, and 6-aminohexanoic acid failed to induce differentiation of HL60 cells. However, 6-acetamidohexanoic acid, when combined with HMBA or NADAH at various concentrations and ratios, enhanced the differentiation of HL60 cells induced by these two compounds. This enhancement was most apparent with addition of 0.50-3.0 mM 6-acetamidohexanoic acid to HL60 cells incubated with 0.1-3.0 mM HMBA or 0.25-1.0 mM NADAH. 6-Aminohexanoic acid similarly enhanced HMBA-induced differentiation of HL60 cells. These in vitro results have implications in terms of the clinical application of HMBA and interpretation of the results of clinical trials performed to date and may provide some insight into the mechanism of HMBA-induced cellular differentiation.This publication has 1 reference indexed in Scilit: