Variants of Human Immunodeficiency Virus Type 1 That Efficiently Use CCR5 Lacking the Tyrosine-Sulfated Amino Terminus Have Adaptive Mutations in gp120, Including Loss of a Functional N-Glycan
Open Access
- 1 April 2005
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 79 (7) , 4460-4469
- https://doi.org/10.1128/jvi.79.7.4357-4368.2005
Abstract
By selecting the R5 human immunodeficiency virus type 1 (HIV-1) strain JR-CSF for efficient use of a CCR5 coreceptor with a badly damaged amino terminus [i.e., CCR5(Y14N)], we previously isolated variants that weakly utilize CCR5(Δ18), a low-affinity mutant lacking the normal tyrosine sulfate-containing amino-terminal region of the coreceptor. These previously isolated HIV-1 JR-CSF variants contained adaptive mutations situated exclusively in the V3 loop of their gp120 envelope glycoproteins. We now have weaned the virus from all dependency on the CCR5 amino terminus by performing additional selections with HeLa-CD4 cells that express only a low concentration of CCR5(Δ18). The adapted variants had additional mutations in their V3 loops, as well as one in the V2 stem (S193N) and four alternative mutations in the V4 loop that eliminated the same N-linked oligosaccharide from position N403. Assays using pseudotyped viruses suggested that these new gp120 mutations all made strong contributions to use of CCR5(Δ18) by accelerating a rate-limiting CCR5-dependent conformational change in gp41 rather than by increasing viral affinity for this damaged coreceptor. Consistent with this interpretation, loss of the V4 N-glycan at position N403 also enhanced HIV-1 use of a different low-affinity CCR5 coreceptor with a mutation in extracellular loop 2 (ECL2) [i.e., CCR5(G163R)], whereas the double mutant CCR5(Δ18,G163R) was inactive. We conclude that loss of the N-glycan at position N403 helps to convert the HIV-1 envelope into a hair-trigger form that no longer requires strong interactions with both the CCR5 amino terminus and ECL2 but efficiently uses either site alone. These results demonstrate a novel functional role for a gp120 N-linked oligosaccharide and a high degree of adaptability in coreceptor usage by HIV-1.Keywords
This publication has 58 references indexed in Scilit:
- Kinetic Factors Control Efficiencies of Cell Entry, Efficacies of Entry Inhibitors, and Mechanisms of Adaptation of Human Immunodeficiency VirusJournal of Virology, 2005
- Antibody neutralization and escape by HIV-1Nature, 2003
- HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sitesNature, 2002
- Addition of a Single gp120 Glycan Confers Increased Binding to Dendritic Cell-Specific ICAM-3-Grabbing Nonintegrin and Neutralization Escape to Human Immunodeficiency Virus Type 1Journal of Virology, 2002
- Mapping the Determinants of the CCR5 Amino-Terminal Sulfopeptide Interaction with Soluble Human Immunodeficiency Virus Type 1 gp120-CD4 ComplexesJournal of Virology, 2001
- CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5Nature, 1996
- The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 IsolatesPublished by Elsevier ,1996
- CC CKR5: A RANTES, MIP-1α, MIP-1β Receptor as a Fusion Cofactor for Macrophage-Tropic HIV-1Science, 1996
- A Dual-Tropic Primary HIV-1 Isolate That Uses Fusin and the β-Chemokine Receptors CKR-5, CKR-3, and CKR-2b as Fusion CofactorsCell, 1996
- Use of a New CD4-Positive HeLa Cell Clone for Direct Quantitation of Infectious Human Immunodeficiency Virus from Blood Cells of AIDS PatientsThe Journal of Infectious Diseases, 1991