The Shape of Gravity

Abstract
In a nontrivial background geometry with extra dimensions, gravitational effects will depend on the shape of the Kaluza-Klein excitations of the graviton. We investigate a consistent scenario of this type with two positive tension three-branes separated in a five-dimensional Anti-de Sitter geometry. The graviton is localized on the ``Planck'' brane, while a gapless continuum of additional gravity eigenmodes probe the {\it infinitely} large fifth dimension. Despite the background five-dimensional geometry, an observer confined to either brane sees gravity as essentially four-dimensional up to a position-dependent strong coupling scale, no matter where the brane is located. We apply this scenario to generate the TeV scale as a hierarchically suppressed mass scale. Arbitrarily light gravitational modes appear in this scenario, but with suppressed couplings. Real emission of these modes is observable at future colliders; the effects are similar to those produced by {\it six} large toroidal dimensions.

This publication has 0 references indexed in Scilit: