Cloning and sequencing of the cyclodiene insecticide resistance gene from the yellow fever mosquito Aedes aegypti

Abstract
In order to examine the conservation of the mechanism of cyclodiene insecticide resistance between species we cloned a cDNA from the yellow fever mosquito Aedes aegypti homologous to the resistance gene Rdl in Drosophila. In D. melanogaster, resistance to cyclodienes and picrotoxinin is caused by a single amino acid substitution (alanine to serine) in the putative channel lining of a γ-aminobutyic acid gated chloride ion channel. We report that the mosquito gene not only shows high homology to that of Drosophila but also that resistant strains display substitution of the same amino acid. The significance of this result in relation to the evolution of pesticide resistance, the use of Drosophila as a model insect for resistance studies and the potential use of this gene as a selectable marker in the genetic transformation of non-Drosophilids is discussed.