Prolonged exercise should be considered alongside typical symptoms of acute myocardial infarction when evaluating increases in cardiac troponin T

Abstract
Data were collected at the 2002 and 2003 London Marathons. Following local ethics approval, we obtained written informed consent from 72 runners (mean (SD) age 35 (9) years) to participate in the study. On the basis of a self reported history all participants were apparently healthy, free from cardiovascular disease, and non-medicated. Whole blood samples were drawn, a standard 12 lead ECG was recorded, and standard echocardiography was performed 24 hours before the race and within 30 minutes of race completion. Indices of left ventricular diastolic (ratio of early to late ventricular filling (E:A)) and systolic (end systolic volume–pressure relation) function were calculated. Serum samples were analysed for cTnT with the third generation immunoassay (Roche Diagnostics, Lewes, UK). The assay imprecision was 5.5% at 0.32 μg/l and 5.4% at 6 μg/l, and had a detection limit of 0.01 μg/l and an upper limit of 25 μg/l. Data were analysed for normality by the Kolmogorov-Smirnov test. Age, completion time, and functional indices were all normally distributed (p > 0.05). The cTnT data were, however, skewed (p < 0.05), probably because of the large number of samples below the assay detection limit. Owing to the abnormal distribution of the cTnT data, analyses was completed by determining the percentage of subjects with a rise in cTnT above the current suggested AMI cut off (0.05 μg/l)1 and a number of previously suggested AMI cut offs (0.01, 0.03, and 0.1 μg/l).1 Pearson correlation coefficients were calculated between increases in cTnT and age, completion time, and indices of left ventricular function.