Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate

Abstract
We construct a Mach-Zehnder interferometer using Bose-Einstein condensed rubidium atoms and optical Bragg diffraction. In contrast to interferometers based on normal diffraction, where only a small percentage of the atoms contribute to the signal, our Bragg diffraction interferometer uses all the condensate atoms. The condensate coherence properties and high phase-space density result in an interference pattern of nearly 100% contrast. The two arms of the interferometer may be completely separated in space, making it an ideal tool that can be used to detect vortices or other topological condensate phases.