Role of Calpain‐ and Interleukin‐1β Converting Enzyme‐Like Proteases in the β‐Amyloid‐Induced Death of Rat Hippocampal Neurons in Culture
Open Access
- 1 April 1997
- journal article
- research article
- Published by Wiley in Journal of Neurochemistry
- Vol. 68 (4) , 1612-1621
- https://doi.org/10.1046/j.1471-4159.1997.68041612.x
Abstract
We investigated the potential role of different proteases in the death of cultured rat hippocampal pyramidal neurons induced by β-amyloid(Aβ) (25–35). Both Aβ(25–35)- and staurosporine-induced death of these neurons appeared to involve apoptosis, as indicated using Hoechst 33342 and terminal dUDP nick end labeling staining, whereas NMDA-induced death appeared more complex. Two irreversible inhibitors of the interleukin-1β converting enzyme (ICE) and related proteases, Z-Val-Ala-Asp-CH2F and acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone, blocked neuronal death produced by Aβ(25–35), staurosporine, and NMDA to differing extents. Furthermore, MDL 28,170, a selective inhibitor of the calcium-regulated protease calpain, also inhibited death induced by all agents. Aβ(25–35) and staurosporine stimulated the breakdown of the protein spectrin, a calpain substrate. Spectrin breakdown was inhibited by MDL 28,170 but not by ICE inhibitors. Leupeptin was only effective in preventing NMDA-induced death. These results support the role of apoptosis in neuronal death due to Aβ(25–35) treatment and also suggest a role for calcium-regulated proteases in this process.Keywords
This publication has 0 references indexed in Scilit: