Monte Carlo Simulations with an Improved Potential Function for Cu(II)-Water Including Neighbour Ligand Corrections

Abstract
Monte Carlo simulations for a Cu2+ ion in infinitely dilute aqueous solution were performed on the basis of a simple pair potential function leading to a first-shell coordination number of 8, in contrast to experimental data. A simple method was introduced therefore, which allows the direct construction of a pair potential containing the most relevant 3-body interactions by means of a correction for the nearest neighbour ligands in the ion's first hydration shell. This procedure leads to much improved results, without significant increase in computational effort during potential construction and simulation