Structure−Immunosuppressive Activity Relationships of New Analogues of 15-Deoxyspergualin. 1. Structural Modifications of the Hydroxyglycine Moiety

Abstract
A series of new analogues of 15-deoxyspergualin (DSG), an immunosuppressive agent currently commercialized in Japan, was synthesized and tested in a graft-versus-host disease (GVHD) model in mice. Using the general concept of bioisosteric replacement, variations of the hydroxyglycine central “C” region were made in order to determine its optimum structure in terms of in vivo immunosuppressive activity. By this way, the malonic derivative 13a was discovered as the first example of a new series of potent immunosuppressive agents encompassing a retro-amide bond linked to the hexyl-guanidino moiety. Structure−activity relationships of this series were studied by synthesizing compounds 13g − i and 13k − s. Variation of the “right-amide” of 13a led to the urea 19a and the carbamates 23 and 27a which proved to be equally active as DSG in our GVHD model. Finally 27a was found to be the most potent derivative, being slightly more active than DSG in a heart allotransplantation model in rats. Due to the absence of chiral center in its structure and to its improved chemical stability compared to DSG, 27a was selected as a candidate for clinical evaluation.