Optical probe for local void fraction and interface velocity measurements

Abstract
In view of the importance of obtaining unsteady local void fraction and interface velocities in liquid-vapor two-phase flows, an optical probe with a controlled tip geometry was developed and is described. In order to minimize the disturbances caused to the flow field by the presence of the probe, its dimensions have been miniaturized. The electronic and hydrodynamic responses of the probe were investigated experimentally. The probe was found to be sensitive to both the interface velocities and the phase present at the probe tip. A possible explanation for the behavior of the probe is presented. Within the velocity range checked and with proper calibration, the optical probe described can be used to determine both local void fractions and interface velocities.