Spectral decomposition of Bell's operators for qubits

Abstract
The spectral decomposition is given for the N-qubit Bell operators with two observables per qubit. It is found that the eigenstates (when non-degenerate) are N-qubit GHZ states even for those operators that do not allow the maximal violation of the corresponding inequality. We present two applications of this analysis. In particular, we discuss the existence of pure entangled states that do not violate the Mermin-Klyshko inequality for N ≥3.
All Related Versions