Glucose Transport across the Blood—Brain Barrier in Normal Human Subjects and Patients with Cerebral Tumours Studied Using [11C]3-O-Methyl-D-Glucose and Positron Emission Tomography
Open Access
- 1 April 1986
- journal article
- research article
- Published by SAGE Publications in Journal of Cerebral Blood Flow & Metabolism
- Vol. 6 (2) , 230-239
- https://doi.org/10.1038/jcbfm.1986.36
Abstract
The kinetics of the regional cerebral uptake of [11C]3- O-methyl-d-glucose ([11C]MeG), a competitive inhibitor of d-glucose transport, have been studied in normal human subjects and patients with cerebral tumours using positron emission tomography (PET). Concomitant measurement of regional cerebral blood volume and blood flow enabled corrections for the contribution of intravascular tracer signal in PET scans to be carried out and regional unidirectional cerebral [11C]MeG extractions to be determined. A three-compartment model containing an arterial plasma and two cerebral compartments was required to produce satisfactory fits to experimental regional cerebral [11C]MeG uptake data. Under fasting, resting conditions, normal controls had mean unidirectional whole-brain, cortical, and white matter [11C]MeG extractions of 14, 13, and 17%, respectively. Mean values of k1 and k2, first-order rate constants describing forward and back transport, respectively, of tracer into the first cerebral compartment, were similar for [11C]MeG and [18F]2-fluoro-2-deoxy-d-glucose (18FDG), a second competitive inhibitor of d-glucose transport, k3, a rate constant describing FDG phosphorylation, was 20 times higher for cortical FDG uptake than the k3 fitted for [11C]MeG cortical uptake. Glioma [11C]MeG extractions ranged from normal levels of 12% to raised levels of 30%. Transport of [11C]MeG in and out of contralateral cortical tissue was significantly depressed in patients with gliomas. It is concluded that under fasting, resting conditions, regional cerebral glucose extraction remains relatively uniform throughout normal brain tissue. Gliomas, however, may have raised levels of glucose extraction. The nature of the second cerebral compartment required to describe [11C]MeG uptake is unclear, but it could represent either a useless phosphorylation–dephosphorylation cycle or nonspecific tracer uptake by a cerebral sub-compartment.Keywords
This publication has 35 references indexed in Scilit:
- Comparative Regional Analysis of 2-Fluorodeoxyglucose and Methylglucose Uptake in Brain of Four Stroke Patients. With Special Reference to the Regional Estimation of the Lumped ConstantJournal of Cerebral Blood Flow & Metabolism, 1985
- Blood flow and oxygen utilisation in the contralateral cerebral cortex of patients with untreated intracranial tumours as studied by positron emission tomography, with observations on the effect of decompressive surgery.Journal of Neurology, Neurosurgery & Psychiatry, 1985
- Studies on regional cerebral oxygen utilisation and cognitive function in multiple sclerosis.Journal of Neurology, Neurosurgery & Psychiatry, 1984
- Phosphorylation of glucose analog 3-0-methyl-D-glucose by rat heartBiochemical and Biophysical Research Communications, 1984
- In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomasAnnals of Neurology, 1983
- Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: A re-examinationBrain Research Reviews, 1982
- 3‐[11C]‐methyl‐D‐glucose, a potential agent for regional cerebral glucose utilization studies: Synthesis, chromatography and tissue distribution in miceJournal of Labelled Compounds and Radiopharmaceuticals, 1981
- Insulin increases glucose transfer across the blood-brain barrier in man.Journal of Clinical Investigation, 1981
- The fate of 3-O-14CH3-glucose in the ratBiochimica et Biophysica Acta, 1956
- On the Origin of Cancer CellsScience, 1956