Abstract
Observations of the clear-sky outgoing longwave radiation and sea surface temperature are combined to examine the evolution of the tropical greenhouse effect from colder La Niña conditions in early 1985 to warmer El Niño conditions in late 1987. Although comparison of individual months can suggest a decrease in greenhouse trapping from cold to warm conditions, when the entire 4-yr record is considered a distinct increase in tropical-mean greenhouse trapping of ∼2 W m−2 is observed in conjunction with a ∼0.4 K increase in tropical-mean sea surface temperature. This observed increase compares favorably with GCM simulations of the change in the clear-sky greenhouse effect during El Niño–Southern Oscillation (ENSO). Superimposed on top of the SST-driven change in greenhouse trapping are dynamically induced changes in tropical moisture apparently associated with a redistribution of SST during ENSO. The GCM simulations also successfully reproduce this feature, providing reassurance in the ability of GCMs to predict both dynamically and thermodynamically driven changes in greenhouse trapping.