Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs.
Open Access
- 1 August 1984
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 74 (2) , 608-613
- https://doi.org/10.1172/jci111458
Abstract
Generation of reactive oxygen metabolites, thromboxane increases, and vasoconstriction have been implicated in the pathogenesis of acute edematous lung injury, such as that seen in patients with the Adult Respiratory Distress Syndrome (ARDS), but their interactions are unknown. We hypothesized that reactive O2 products would stimulate arachidonic acid metabolism in lungs and that vasoactive products of arachidonate, such as the potent vasoconstrictor thromboxane A2, might then mediate O2-metabolite-induced pulmonary vasoconstriction. We found that O2 metabolites generated by injection of purine plus xanthine oxidase caused increases in mean pulmonary artery perfusion pressures (27 +/- 4 mmHg) in isolated perfused lungs. In addition, purine plus xanthine oxidase also caused 30-fold increases in perfusate levels of thromboxane B2 (the stable metabolite of thromboxane A2) compared with only twofold increases in 6-keto-PGF1a (the stable metabolite of prostacyclin). Moreover, prior addition of catalase inhibited both vasoconstriction and the thromboxane B2 production seen in isolated lungs following injection of purine plus xanthine oxidase. Similarly, pretreatment with cyclooxygenase inhibitors, either aspirin or indomethacin, also completely blocked thromboxane generation and markedly attenuated pressor responses usually seen after purine plus xanthine oxidase (increase in mean pulmonary artery perfusion pressures, 4.4 +/- 1.5 mmHg). Furthermore, imidazole, a thromboxane synthetase inhibitor, also decreased O2-metabolite-induced thromboxane generation and vasoconstriction. These results suggested that thromboxane generation might participate in O2-metabolite-induced vasoconstriction. However, since a significant correlation between thromboxane levels and the degree of vasoconstriction could not be demonstrated, and since addition of superoxide dismutase reduced thromboxane generation but did not affect the intensity of vasoconstriction, it is possible that thromboxane is not the only vasoactive mediator in this model. We conclude that exposing lungs to O2 metabolites results in thromboxane generation and that thromboxane is a major mediator of oxidant-induced vasoconstriction.This publication has 35 references indexed in Scilit:
- Acetyl glyceryl ether phosphorylcholine-stimulated human platelets cause pulmonary hypertension and edema in isolated rabbit lungs. Role of thromboxane A2.Journal of Clinical Investigation, 1983
- ROLE OF PROSTAGLANDINS IN ACUTE PULMONARY MICROVASCULAR INJURY*Annals of the New York Academy of Sciences, 1982
- Prevention by granulocyte depletion of increased vascular permeability of sheep lung following endotoxemia.Journal of Clinical Investigation, 1981
- Oxidant injury of lung parenchymal cells.Journal of Clinical Investigation, 1981
- Role of Thromboxane and Prostacyclin in Pulmonary Vasomotor Changes after Endotoxin in DogsJournal of Clinical Investigation, 1981
- In vivo damage of rat lungs by oxygen metabolites.Journal of Clinical Investigation, 1981
- The Biosynthesis and Metabolism of ProstaglandinsAnnual Review of Physiology, 1979
- Accelerative autoactivation of prostaglandin biosynthesis by PGG2Biochemical and Biophysical Research Communications, 1978
- Oxygen requirement for prostaglandin biosynthesisProstaglandins and Medicine, 1978
- THE RELEASE OF PROSTAGLANDINS FROM LUNG AND OTHER TISSUESAnnals of the New York Academy of Sciences, 1971