An equivalence theorem for L1 convergence of the kernel regression estimate
- 30 September 1989
- journal article
- Published by Elsevier in Journal of Statistical Planning and Inference
- Vol. 23 (1) , 71-82
- https://doi.org/10.1016/0378-3758(89)90040-2
Abstract
No abstract availableKeywords
This publication has 14 references indexed in Scilit:
- The kernel estimate is relatively stableProbability Theory and Related Fields, 1988
- The rates of convergence of kernel regression estimates and classification rulesIEEE Transactions on Information Theory, 1986
- Distribution-Free Pointwise Consistency of Kernel Regression EstimateThe Annals of Statistics, 1984
- Distribution-free consistency of a nonparametric kernel regression estimate and classificationIEEE Transactions on Information Theory, 1984
- The Equivalence of Weak, Strong and Complete Convergence in $L_1$ for Kernel Density EstimatesThe Annals of Statistics, 1983
- On the Almost Everywhere Convergence of Nonparametric Regression Function EstimatesThe Annals of Statistics, 1981
- Estimation Non-paramétrique de la Régression: Revue BibliographiqueInternational Statistical Review, 1981
- Distribution-Free Consistency Results in Nonparametric Discrimination and Regression Function EstimationThe Annals of Statistics, 1980
- Weighted sums of certain dependent random variablesTohoku Mathematical Journal, 1967
- Probability Inequalities for Sums of Bounded Random VariablesJournal of the American Statistical Association, 1963