Proteomic analysis of the effects and interactions of sleep deprivation and aging in mouse cerebral cortex

Abstract
The cellular and molecular processes that underlie the drives and functions of sleep have been the topic of many studies in the last few decades. Discovery-based techniques, such as cDNA microarrays, have increasingly been utilized in conjunction with sleep deprivation paradigms to examine the molecular mechanisms and functions of sleep. These studies have helped to validate and expand existing hypotheses, such as those on the roles of sleep in synaptic plasticity and in energy metabolism. The mechanisms underlying the highly prevalent changes in sleep architecture with age are not known, but likely reflect fundamental changes in the molecular basis of circadian timing and sleep homeostatic processes. We decided to explore the effects and interactions of sleep deprivation and aging utilizing the proteomic technique of difference in gel electrophoresis (DIGE). DIGE, which utilizes cyanine dye labeling of samples, allows for the comparison of multiple experimental groups within and across gels. In this study, we compared cerebral cortex tissue from young (2.5 months) and old (24 months) mice that had been sleep deprived for 6 h to tissue from undisturbed young and old control animals. Following DIGE, automatic image matching and spot identification, and statistical analysis, 43 unique proteins were identified. The proteins were grouped into seven functional classes based on published characteristics: cell signaling, cytoskeletal, energy metabolism, exocytosis, heat shock proteins, mRNA processing/trafficking, and serum proteins. The identity and characteristics of these proteins relevant to sleep and aging are discussed.