Quasars as Cosmological Probes: The Ionizing Continuum, Gas Metallicity and the EW-L Relation
Preprint
- 27 May 1998
Abstract
Using a realistic model for line emission from the broad emission line regions of quasars, we are able to reproduce the previously observed correlations of emission-line ratios with the shape of the spectral energy distribution (SED). In agreement with previous studies, we find that the primary driving force behind the Baldwin Effect (EW ~ L^beta, beta < 0) is a global change in the SED with quasar luminosity, in that more luminous quasars must have characteristically softer ionizing continua. This is completely consistent with observations that show correlations between L_uv, alpha_ox, alpha_uvx, line ratios and EWs. However, to explain the complete lack of a correlation in the EW(NV)--L_uv diagram we propose that the more luminous quasars have characteristically larger gas metallicities (Z). As a secondary element, nitrogen's rapidly increasing abundance with increasing Z compensates for the losses in EW(NV) emitted by gas illuminated by softer continua in higher luminosity quasars. A characteristic relationship between Z and L has an impact on the EW--L_uv relations for other lines as well. For a fixed SED, an increasing gas metallicity reduces the EW of the stronger metal lines (the gas cools) and that of Ly_alpha and especially HeII (because of the increasing metal opacity), while the weaker lines (e.g., CIII] 1909) generally respond positively. The interplay between the effects of a changing SED and Z with L results in the observed luminosity dependent spectral variations. All of the resulting dependences on L_uv are within the range of the observed slopes.Keywords
All Related Versions
- Version 1, 1998-05-27, ArXiv
- Published version: The Astrophysical Journal, 507 (1), 24.
This publication has 0 references indexed in Scilit: