Estimating above- and below-ground macrophyte production in Scirpus tidal marshes

Abstract
Different methods to estimate primary production of Scirpus marshes of the St. Lawrence estuary were compared. Quadrats 25 .times. 25 cm and cores 10 cm in diameter were found to be the optimal size to sample above- and below-ground standing crops, respectively. Ash content for different plant parts of various species was measured to obtain more accurate estimates of organic matter. A series of allometric equations relating stem height and mass were developed to estimate aerial standing crop from permanent nondestructively sampled plots. This method, however, overestimated standing crop compared with the destructive (harvest) method. The relationship between the above- and below-ground standing crop was also determined for the dominant species and used to predict belowground biomass without destructive sampling. Finally, the Smalley method provided the best estimates of net annual above- and below-ground production when losses attributed to decomposition were not considered. For less intensive studies, however, the methods based on peak standing crop and on the difference between maximum and minimum biomass would yield good approximations of above- and below-ground production.