Abstract
If S is a finite set, let ∣S∣ be the cardinality of S. We show that if m ∈ ω, A ⊆ ω, B ⊆ ω, and ∣i: ≤ i ≤ 2m & xiA}∣ can be computed by an algorithm which, for all x1, …, x2m, makes at most m queries to B, then A is recursive in the halting set K. If m = 1, we show that A is recursive.