A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm

Abstract
Application of subspace-based algorithms to narrowband direction-of-arrival (DOA) estimation requires that both the array response in all directions of interest and the spatial covariance of the noise must be known. In practice, however, neither of these quantities is known precisely. Depending on the degree to which they deviate from their nominal values, serious performance degradation can result. The performance of the MUSIC algorithm is examined for situations in which the noise covariance and array response are perturbed from their assumed values. Theoretical expressions for the error in the MUSIC DOA estimates are derived and compared with simulations performed for several representative cases, and with the appropriate Cramer-Rao bound. An optimally weighted version of MUSIC is proposed for a particular class of array errors

This publication has 21 references indexed in Scilit: