Abstract
During the early stages of atherogenesis, as well as during in vitro cultivation, smooth muscle cells modulate from a contractile to a synthetic phenotype. This process includes the loss of myofilaments and the formation of an extensive rough endoplasmic reticulum and a large Golgi complex; it leads to decreased contractility and the commencement of cell growth and secretion of extracellular matrix components. In this paper, the effects of nicotine on adult rat arterial smooth muscle cells cultivated in vitro were studied by transmission electron microscopy and3H-thymidine autoradiography. The results show that the drug speeded the initial rate of transition of the cells from contractile to synthetic phenotype in primary culture. Further, it stimulated the initiation of DNA synthesis in growth-arrested secondary cultures. Its effect was independent of other mitogens and additive to that of serum. The influences of nicotine, both on the modulation of the smooth muscle phenotype and the initiation of DNA synthesis, occurred at concentrations lower than those obtained in the blood after smoking and could contribute to the role of smoking as a risk factor for atherosclerosis.