Clathrin- and caveolin-1–independent endocytosis
Top Cited Papers
Open Access
- 24 January 2005
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 168 (3) , 477-488
- https://doi.org/10.1083/jcb.200407113
Abstract
Simian Virus 40 (SV40) has been shown to enter host cells by caveolar endocytosis followed by transport via caveosomes to the endoplasmic reticulum (ER). Using a caveolin-1 (cav-1)–deficient cell line (human hepatoma 7) and embryonic fibroblasts from a cav-1 knockout mouse, we found that in the absence of caveolae, but also in wild-type embryonic fibroblasts, the virus exploits an alternative, cav-1–independent pathway. Internalization was rapid (t1/2 = 20 min) and cholesterol and tyrosine kinase dependent but independent of clathrin, dynamin II, and ARF6. The viruses were internalized in small, tight-fitting vesicles and transported to membrane-bounded, pH-neutral organelles similar to caveosomes but devoid of cav-1 and -2. The viruses were next transferred by microtubule-dependent vesicular transport to the ER, a step that was required for infectivity. Our results revealed the existence of a virus-activated endocytic pathway from the plasma membrane to the ER that involves neither clathrin nor caveolae and that can be activated also in the presence of cav-1.Keywords
This publication has 45 references indexed in Scilit:
- Caveosomes and endocytosis of lipid raftsJournal of Cell Science, 2003
- Recycling of Raft-associated Prohormone Sorting Receptor Carboxypeptidase E Requires Interaction with ARF6Molecular Biology of the Cell, 2003
- Caveolin-1 Is a Negative Regulator of Caveolae-mediated Endocytosis to the Endoplasmic ReticulumJournal of Biological Chemistry, 2002
- Caveolae Are Highly Immobile Plasma Membrane Microdomains, Which Are not Involved in Constitutive Endocytic TraffickingMolecular Biology of the Cell, 2002
- Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted MiceScience, 2001
- Expression of Caveolin-1 Is Required for the Transport of Caveolin-2 to the Plasma MembraneJournal of Biological Chemistry, 1999
- Dynamin at the Neck of Caveolae Mediates Their Budding to Form Transport Vesicles by GTP-driven Fission from the Plasma Membrane of EndotheliumThe Journal of cell biology, 1998
- De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin.Proceedings of the National Academy of Sciences, 1995
- Caveolin, a protein component of caveolae membrane coatsPublished by Elsevier ,1992
- Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surfacePublished by Elsevier ,1992