A transposable element that splits the promoter region inactivates a Drosophila cuticle protein gene.
Open Access
- 1 December 1982
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 79 (23) , 7430-7434
- https://doi.org/10.1073/pnas.79.23.7430
Abstract
Two mutations that affect larval cuticle protein gene expression in the 2/3 variant Drosophila melanogaster strain were investigated. We demonstrate that this strain synthesizes an electrophoretic variant, fast 2 (CPf2), of wild-type cuticle protein 2(CP2). It also lacks detectable amounts of cuticle protein 3 (CP3). The other major cuticle proteins are still present. Protein and DNA sequence analyses indicate that point mutations cause two amino acid substitutions that change the electrophoretic mobility of CPf2 relative to that of CP2. The mutation abolishing the expression of CP3 was found to be a 7.3-kilobase DNA insertion located within the T-A-T-A box region of this gene, at -31 base pairs from the mRNA start site. This DNA insertion, called H.M.S. Beagle, belongs to a conserved family of repeated DNA elements that have characteristics similar to those of previously characterized Drosophila transposable elements. H.M.S. Beagle elements are repeated approximately 50 times in the haploid genome and exhibit restriction fragment-length polymorphisms around points of insertion between Canton S, Oregon R, and 2/3 Drosophila strains. Sequence analysis indicates that H.M.S. Beagle contains 266-base-pair direct repeats at its termini and is flanked by a duplication of 4 base pairs of target DNA sequence, T-A-T-A, in the CP3 gene insertion. Thus, insertion of a transposable element into the putative promoter region of the CP3 gene is evidently responsible for inactivating CP3 gene expression.This publication has 20 references indexed in Scilit:
- Regulation of white locus expression: The structure of mutant alleles at the white locus of Drosophila melanogasterCell, 1982
- Molecular organization of a Drosophila puff site that responds to ecdysoneCell, 1982
- DROSOPHILA GENOME ORGANIZATION: CONSERVED AND DYNAMIC ASPECTSAnnual Review of Genetics, 1981
- Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: Identification of an upstream control regionCell, 1981
- Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase IICell, 1981
- Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genesCell, 1980
- DNA rearrangements associated with a transposable element in yeastCell, 1980
- Genetic events associated with an insertion mutation in yeastCell, 1980
- New Protein Sequenator with Increased SensitivityScience, 1980
- Sequence organization of two recombinant plasmids containing genes for the major heat shock-induced protein of D. melanogasterCell, 1979