Iontophoretic study of the action of excitatory amino acids on rod horizontal cells of the dogfish retina

Abstract
Much interest has been focused on the amino acids, L-glutamate and L-aspartate, as possible neurotransmitters of vertebrate photoreceptors. These amino acids and a number of their analogues were applied iontophoretically to rod horizontal cells on the surface of dark-adapted dogfish retinal slices under visual control. L-glutamate and kainate were found to be of approximately equal potency in depolarizing rod horizontal cells, while L-aspartate was about one tenth as potent. Simultaneous iontophoretic pulses applied to two barrels, each containing either L-glutamate or kainate, produced a larger depolarization than expected for linear summation. Potentiation was most prominent when synaptic transmitter release was reduced by light, demonstrating that these agonists interact with the same postsynaptic receptors as those acted upon by the rod neurotransmitter. Analysis of dose—response curves indicated that at least two molecules of agonist were required to open a cationic channel, presumably the basis for the depolarization. The cells did not become desensitized to long or repeated exposures of the agonists.