Scalable analysis of flow cytometry data using R/Bioconductor
Open Access
- 6 July 2009
- journal article
- research article
- Published by Wiley in Cytometry Part A
- Vol. 75A (8) , 699-706
- https://doi.org/10.1002/cyto.a.20746
Abstract
Flow cytometry is one of the fundamental research tools available to the life scientist. The ability to observe multidimensional changes in protein expression and activity at single‐cell resolution for a large number of cells provides a unique perspective on the behavior of cell populations. However, the analysis of complex multidimensional data is one of the obstacles for wider use of polychromatic flow cytometry. Recent enhancements to an open‐source platform—R/Bioconductor—enable the graphical and data analysis of flow cytometry data. Prior examples have focused on high‐throughput applications. To facilitate wider use of this platform for flow cytometry, the analysis of a dataset, obtained following isolation of CD4+CD62L+T cells from Balb/c splenocytes using magnetic microbeads, is presented as a form of tutorial. A common workflow for analyzing flow cytometry data was presented using R/Bioconductor. In addition, density function estimation and principal component analysis are provided as examples of more complex analyses. The compendium presented here is intended to help illuminate a path for inquisitive readers to explore their own data using R/Bioconductor (available as Supporting Information). © 2009 International Society for Advancement of CytometryKeywords
This publication has 25 references indexed in Scilit:
- Analysis of flow cytometry data using an automatic processing toolCytometry Part A, 2008
- Modulating Temporal Control of NF-κB Activation: Implications for Therapeutic and Assay SelectionBiophysical Journal, 2008
- Using flowViz to visualize flow cytometry dataBioinformatics, 2008
- Evaluation of a green laser pointer for flow cytometryCytometry Part A, 2007
- Mixture‐model classification in DNA content analysisCytometry Part A, 2007
- Data quality assessment of ungated flow cytometry data in high throughput experimentsCytometry Part A, 2007
- Statistical Analyses and Reproducible ResearchJournal of Computational and Graphical Statistics, 2007
- A new “Logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated dataCytometry Part A, 2006
- Hyperlog—A flexible log‐like transform for negative, zero, and positive valued dataCytometry Part A, 2005
- On nonparametric discrimination using density differencesBiometrika, 1988