Pressure effect on hydrogen isotope exchange kinetics in chymotrypsinogen investigated by FT-IR spectroscopy
- 1 November 1991
- journal article
- Published by Canadian Science Publishing in Canadian Journal of Chemistry
- Vol. 69 (11) , 1699-1704
- https://doi.org/10.1139/v91-250
Abstract
Hydrogen/deuterium (H/D) exchange rate constants in chymotrypsinogen have been determined at several pressures up to 28.9 kbar by FTIR spectroscopy. The secondary structure of the protein molecules was monitored simultaneously at the corresponding pressures by the intensity redistribution of the infrared amide I band at these pressures. As in other proteins, the labile protons on the amide groups in chymotrypsinogen can, to a good approximation, be separated into two classes, each with distinct first order H/D exchange rates constants in the time period from 10 min to ~24 h. The fast exchange rate constant increases while the slow exchange rate constant decreases with increasing pressure. The increase in the fast exchange rate constant at high pressure is largely associated with the pressure-induced unfolding of the protein molecules. At extremely high pressure (12.8 kbar), in addition to the unfolding of protein molecules, pressure induced a distortion and weakening of the hydrogen bonds of the fold protein segments also contribute to an increase in the overall H/D exchange rate. The present results confirm that when chymotrypsinogen is dissolved in D2O, a considerable amount of D2O molecules is bound to the protein molecules on the surface as well as in the interior cavities of the molecules. The H/D exchange takes place between these bound D2O and the protons in the protein molecules. The mechanism of the H/D exchange and the interior dynamics in proteins are discussed on the basis of the present results. Key words: hydrogen/deuterium exchange, exchange kinetics, rate constant, pressure effects, infrared spectroscopy, protein, conformation structure, bound water.Keywords
This publication has 0 references indexed in Scilit: