An electron microscopic study of the afferent connections of the lateral reticular nucleus of the cat

Abstract
The mode and pattern of termination of the afferents to the lateral reticular nucleus (LRN) of the cat were examined at the cellular level through the ultrastructural localization of induced degeneration. Examination of the LRN following hemicordotomy at the fifth and sixth cervical levels revealed that most of the degenerating terminals were in contact with intermediate and distal dendrites, and that most of these degenerating terminals were small and contained round vesicles. Fewer degenerating terminals were observed on the somata and proximal dendrites after spinal hemisection, and most of these terminals were large and contained round vesicles. Following lesions of the pericruciate cortex, small degenerating terminals were occasionally observed making contact onto intermediate and distal dendrites. Degenerating rubral terminals were observed synapsing on somata, somatic and dendritic spines, proximal dendrites and most commonly on intermediate and distal dendrites following lesioning of the red nucleus. The degenerating axosomatic rubro‐LRN terminals belonged to the large, round‐vesicle terminal population, while those degenerating terminals contacting intermediate and distal dendrites belonged to the small, round‐vesicle population. Small, degenerating terminals were occasionally seen following lesions of the fastigial nucleus, and they made synaptic contact mainly onto intermediate and distal dendrites and dendritic spines. The present ultrastructural observations taken together with the convergence pattern of LRN afferents and the available electrophysiological data on inputs to the LRN suggest an extensive integration of converging impulses from two or more afferent sources to the rostral LRN neurons. The results of this study therefore support the view that the rostral LRN functions as a comparator of command signals from the motor cortex and red nucleus and feedback signals from the spinal cord and cerebellum during ongoing movement.