Detonations at nanometer resolution using molecular dynamics

Abstract
We show that discrete detonation chemistry can be studied using molecular dynamics simulations. A model 2D semi-infinite energetic molecular solid described by reactive many-body potentials is shown to support a chemically sustained shock wave with properties that are consistent with experimental results and the classic continuum theory of planar detonations. These promising results demonstrate for the first time that simulations using reactive many-body potentials provide a powerful probe of the interplay between the continuum properties of shock waves and the atomic-scale chemistry they induce in condensed-phase detonations.