The Mid-Carboniferous to Lowermost Permian succession of Spiti (Po Group and Ganmachidam Formation; Tethys Himalaya, Northern India): Gondwana glaciation and rifting of Neo-Tethys.

Abstract
The upper Lower Carboniferous to lowermost Permian terrigenous succession of the Spiti Valley can be subdivided into five formations (Thabo Formation, Fenestella Shale, Kabjima Quartzarenite, Chichong Formation and Ganmachidam Diamictite), here described in detail and subdivided into members or lithozones. The Po Group, overlying the platform carbonates and gypsum deposits of the Lipak Formation, records an increase of subarkosic to quartzarenitic terrigenous detritus derived from uplift and erosion of continental blocks in the south during the initial stage of Neo-Tethyan rifting. Increasing mineralogic stability through the Thabo Formation broadly coincides with a climate change from tropical arid to temperate humid conditions during the Visean-Serpukhovian. The Fenestella Shale, containing rich brachiopod associations of Bashkirian age, documents a stage of widespread subsidence and transgression, followed by the regressive Kabjima Quartzarenite, which records recycling of quartzose sedimentary sequences in the south. The Chichong Formation marks another transgressive event, associated with a significant increase of granitoid detritus, partly from nearby Lesser to High Himalayan source areas. Chaetetid, cephalopod and brachiopod faunas hint at a Moscovian age for the “Chaetetid beds”, at the top of which varve-like lamination and scattered pebbles suggest glacially influenced deposition. The overlying glacio-fluvial (?) cobble conglomerates (“Pebbly beds”) reflect onset of rapid tectonic uplift. Abundant detritus from sedimentary rocks characterizes the overlying Ganmachidam Diamictite, deposited in glacio-marine environments; cold-water marine faunas of Asselian age occur in its middle part. Erosion of progressively older pre-rift sedimentary successions is ascribed to basin inversion, associated with unroofing of anatectic granitoids of the Lesser and High Himalayas. Basaltic to rhyolitic volcanic detritus documents alkalic magmatism at the climax of continental rifting.

This publication has 2 references indexed in Scilit: