Abstract
1. Two experiments are reported in which the effect of alteration in growth rate on the levels of avian skeletal muscle calcium-activated neutral proteinase (EC 3.4.22. 17) (CANP or calpain) and its specific inhibitor (calpastatin), a system thought to be implicated in myofibrillar catabolism, was studied by means of manipulation of dietary protein concentration. 2. In Expt 1 broiler chicks were given free access to diets containing 105, 149, 197 and 212 g protein/kg for 20 d. In Expt 2 the four dietary treatments were 119, 141, 182 and 227 g protein/kg diet given for 16 d. Chick growth rate and total leg skeletal muscle weight significantly increased (P < 0·001) with increasing dietary protein concentration in both experiments. Total skeletal muscle protein increased with the level of dietary protein, the effect being significant (P < 0·01 and P < 0·001 in Expts 1 and 2 respectively). 3. Minced leg muscle was homogenized in low-salt buffers, and the extract chromatographed on DEAE-cellulose to separate proteinase and inhibitor activity. The partially purified CANP enzyme and inhibitor proteins were present at a concentration broadly consistent with literature reports, and their elution characteristics and Ca2+ concentration dependence were not varied by dietary protein concentration. 4. Both the muscle CANP and CANP inhibitor activities (units/kg muscle) exhibited upward trends with growth rate and increased muscle weight. However, these differences were not statistically significant (P > 0·05) and were not present at all when the results were expressed as units/g muscle protein.