Abstract
The equation of motion of a small spherical rigid particle in a turbulent flow field, including the Stokes drag, the Basset force, and the virtual mass effects, is considered. For an isotropic field, the lift force and the velocity gradient effects are neglected. Using the spectral method, responses of the resulting constant coefficient stochastic integrao-differential equation are studied. Analytical expressions relating the Lagrangian energy spectra of particle velocity to that of the fluid are developed and the results are used to evaluate various response statistics. Variations of the mean-square particle velocity and particle diffusivity with size, density ratio and response time are studied. The theoretical predictions are compared with the digital simulation results and the available data and good agreement is observed.

This publication has 0 references indexed in Scilit: