Anthocyanin synthesis in a white flowering mutant of Petunia hybrida

Abstract
In flower buds of the white flowering mutant W19 of Petunia hybrida four biologically active dihydroflavonol intermediates-dihydroquercetin-7-glucoside, dihydroquercetin-4′-glucoside, dihydroquercetin, and dihydrokaempferol-7-glucoside-are accumulated. When dihydroquercetin was supplied to in vitro cultured corollas of the white flowering mutant W18, a mixture of cyanidin and delphinidin glycosides was produced, cyanidin-3-glucoside being the major pigment. The quantity of dihydroquercetin accumulated in W19 is very small, but this compound appears to be a more direct precursor of anthocyanins than the glucosides of dihydrokaempferol and dihydroquercetin. The conditions for pigment synthesis in W18 were optimalized. The quantitative uptake of dihydroquercetin was also studied. It was demonstrated that ca. 1/3 of the quantity present in the culture solution entered the corolla. From the absorbed dihydroquercetin only 14% was converted into anthocyanins. Complementation experiments to determine the biosynthetic sequence of the anthocyanin genes An1, An2, and An3 indicated that the genes An1 and An2 are indistinguishable by this technique.