On the chemistry and high field nuclear magnetic resonance spectroscopy of rapamycin

Abstract
Base catalysed hydrolysis of rapamycin (C51H79NO13) affords six neutral compounds identified by chemical and spectroscopic means as 2a, 3b, 3d, 5, 2,4-dimethylphenol, and L(−)-piperidine-2-carboxylic acid 6, and whose generation has been plausibly rationalized. These findings as well as detailed analyses of 13C nmr and 1H nmr spectra provide independent corroboration of the X-ray derived rapamycin crystal structure 1. Structurally homogeneous in the solid state, rapamycin is found to occur in solutions as a mixture of two conformational isomers (approximately 4:1). Through nearly complete assignment of the high field 1H (400 MHz) and 13C (100.6 MHz) nmr spectra, the isomerism is shown to be associated with trans–cis rotation of an amidic bond within the 31-membered macrolide ring. The predominant form corresponds to the conformer portrayed by X-ray analysis.

This publication has 2 references indexed in Scilit: