Abstract
We prove that the Hamiltonian system \begin{cases} \.{p}\: = \:−\frac{∂\mathrm{V}}{∂q} \\ \.{q}\: = \:p \end{cases} \qquad p,\:q \in \mathrm{R}^{n};\ \mathrm{V} \in \mathrm{C}^{2}\left(\mathrm{R}^{n}\right) has at least one periodic solution of energy h , provided that the set \{q \in \mathrm R^n | \mathrm V(q) ⩽ h\} is compact.

This publication has 6 references indexed in Scilit: