Abstract
Methods employed in the course of tissue engineering often offer unique opportunities to observe cell-matrix interactions that cannot otherwise be viewed. These observations may provide insights into cell behavior than can contribute important new knowledge about cell biology. One such set of observations led to the discoveries that musculoskeletal connective tissue cells express a contractile muscle actin isoform, α-smooth muscle actin, and can contract. This knowledge may help to explain how these cells generate forces required for certain physiological and pathological functions, and this information may inform future approaches to regulate this function to advance tissue engineering. Tissue engineering science is thus emerging as an importance force that can both contribute to cell and molecular biology and add to the fund of knowledge supporting the production of tissue in vitro or in vivo to improve the management of a wide variety of disorders.