Abstract
Using the techniques employed in developing a Papkovich-Neuber representation for the displacement vector in classical elasticity, a particular integral of the kinematical equations of equilibrium for the uncoupled theory of electrostriction is developed. The particular integral is utilized in conjunction with the displacement potential function approach to problems of the theory of elasticity to obtain closed-form solutions of several stress concentration problems for elastic dielectrics. Under a prescribed uniform electric field at infinity, the problems of an infinite elastic dielectric having first a spherical cavity and then a rigid spherical inclusion are solved. The rigid spheroidal inclusion problem and the penny-shaped crack problem are also solved for the case where the prescribed field is parallel to their axes of revolution.

This publication has 0 references indexed in Scilit: