On embedded minimal disks in convex bodies
- 1 October 1986
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 3 (5) , 345-390
- https://doi.org/10.1016/s0294-1449(16)30378-x
Abstract
If A ⊂ ℝ^3 is a convex body we prove the existence of an embedded minimal disk M ⊂ A meeting ∂A orthogonally. Résumé: Si A ⊂ ℝ^3 est un ensemble convexe, nous prouvons l’existence d’une sous-variété minimale M ⊂ A du type disque, intersectant ∂A orthogonalement.This publication has 5 references indexed in Scilit:
- On a free boundary problem for minimal surfacesInventiones Mathematicae, 1984
- Stationary minimal surfaces with boundary on a simplexInventiones Mathematicae, 1984
- The Existence of Minimal Immersions of 2-SpheresAnnals of Mathematics, 1981
- On the First Variation of a Varifold: Boundary BehaviorAnnals of Mathematics, 1975
- On the First Variation of a VarifoldAnnals of Mathematics, 1972