Spontaneous alignment of frustrated bonds in an anisotropic, three-dimensional Ising model

Abstract
The Ising model on a three-dimensional cubic lattice with all plaquettes in the x-y frustrated plane is studied by use of a Monte Carlo technique; the exchange constants are of equal magnitude, but have varying signs. At zero temperature, the model has a finite entropy and no long-range order. The low-temperature phase is characterized by an order parameter measuring the openZ4 symmetry of lattice rotations which is invariant under Mattis gauge transformation; fluctuations lead to the alignment of frustrated bonds into columns and a fourfold degeneracy. An additional factor-of-2 degeneracy is obtained from a global spin flip. The order vanishes at a critical temperature by a transition that appears to be in the universality class of the D=3, XY model. These results are consistent with the theoretical predictions of Blankschtein et al. This Ising model is related by duality to phenomenological models of two-dimensional frustrated quantum antiferromagnets.