Toward a global picture of development: Lessons from genome-scale analysis inCaenorhabditis elegans embryonic development

Abstract
Development is the result of complex events, including cascades of transcriptional programs and numerous molecular interactions. Traditionally, research focus has been given to the characterization of individual mutants, regulators, or interactions. With the availability of complete genome sequences and high‐throughput (HT) experimental techniques, probing development on a system level has become feasible. Pioneering work initiated in invertebrate model systems such as Caenorhabditis elegans has provided first drafts of catalogs of essential components, transcriptional regulatory diagrams and molecular interaction networks underlying developmental processes. Integrating these drafts approximates a system‐level picture of development and provides local models for protein/gene functions. Here we summarize the progress toward elucidating developmental processes on a system level, including the applications of genomic technologies and computational analyses. We discuss C. elegans embryonic development in case studies to illustrate how various HT approaches can be integrated and how biological insights can be gained from these approaches. Developmental Dynamics 235:2009–2017, 2006.