Indentation of a power law creeping solid
- 8 April 1993
- journal article
- Published by The Royal Society in Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences
- Vol. 441 (1911) , 97-124
- https://doi.org/10.1098/rspa.1993.0050
Abstract
The aim of this paper is to establish a rigorous theoretical basis for interpreting the results of hardness tests on creeping specimens. We investigate the deformation of a creeping half-space with uniaxial stress-strain behaviour $\dot{\epsilon}=\dot{\epsilon}_{0}(\sigma /\sigma _{0})^{m}$, which is indented by a rigid punch. Both axisymmetric and plane indenters are considered. The shape of the punch is described by a general expression which includes most indenter profiles of practical importance. Two methods are used to solve the problem. The main results are found using a transformation method suggested by R. Hill. It is shown that the creep indentation problem may be reduced to a form which is independent of the geometry of the punch, and depends only on the material properties through m. The reduced problem consists of a nonlinear elastic half-space, which is indented to a unit depth by a rigid flat punch of unit radius (in the axisymmetric case), or unit semi-width (in the plane case). Exact solutions are given for m = 1 and m = $\infty $. For m between these two limits, the reduced problem has been solved using the finite element method. The results enable the load on the indenter and the contact radius to be calculated in terms of the indentation depth and rate of penetration. The stress, strain and displacement fields in the half-space may also be deduced. The accuracy of the solution is demonstrated by comparing the results with full-field finite element calculations. The predictions of the theory are shown to be consistent with experimental observations of hardness tests on creeping materials reported in the literature.
Keywords
This publication has 15 references indexed in Scilit:
- Similarity analysis of creep indentation testsProceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1992
- Mechanical properties of thin filmsMetallurgical Transactions A, 1989
- A theoretical study of the Brinell hardness testProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1989
- A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% PbActa Metallurgica, 1988
- Elastic analysis of some punch problems for a layered mediumInternational Journal of Solids and Structures, 1987
- Contact MechanicsPublished by Cambridge University Press (CUP) ,1985
- Indentation hardness and hot pressingActa Metallurgica, 1980
- The correlation of indentation experimentsJournal of the Mechanics and Physics of Solids, 1970
- Singular behaviour at the end of a tensile crack in a hardening materialJournal of the Mechanics and Physics of Solids, 1968
- Plastic flow in glassProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964