Harnack inequalities for quasi-minima of variational integrals
- 1 August 1984
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 1 (4) , 295-308
- https://doi.org/10.1016/s0294-1449(16)30424-3
Abstract
In his fundamental work on linear elliptic equations, De Giorgi established local bounds and Hölder estimates for functions satisfying certain integral inequalities. The main result of this paper is that the Harnack inequality can be proved directly for functions in the De Giorgi classes. This implies that every non-negative Q-minimum (in the terminology of Giaquinta and Giusti) satisfies a Harnack inequality. Résumé: Dans son travail fondamental sur les équations linéaires elliptiques, De Giorgi a donné des estimations locales et hölderiennes pour des fonctions satisfaisant certaines inégalités intégrales. Le résultat principal de cet article est que l’inégalité de Harnack peut être démontrée directement pour les fonctions appartenant aux classes de De Giorgi. Ceci implique que tout Q-minimum (au sens de Giaquinta et Giusti) non-négatif vérifie une inégalité de Harnack.Keywords
Funding Information
- National Science Foundation (48–206-80, MCS 8300293)
This publication has 7 references indexed in Scilit:
- Quasi-minimaAnnales de l'Institut Henri Poincaré C, Analyse non linéaire, 1984
- On the regularity of the minima of variational integralsActa Mathematica, 1982
- Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equationsInventiones Mathematicae, 1980
- On harnack type inequalities and their application to quasilinear elliptic equationsCommunications on Pure and Applied Mathematics, 1967
- Local behavior of solutions of quasi-linear equationsActa Mathematica, 1964
- On Harnack's theorem for elliptic differential equationsCommunications on Pure and Applied Mathematics, 1961
- A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equationsCommunications on Pure and Applied Mathematics, 1960