The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study
- 1 January 1997
- journal article
- research article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Biomedical Engineering
- Vol. 44 (8) , 706-719
- https://doi.org/10.1109/10.605427
Abstract
The aim of this study was to quantify the effects of selected inhomogeneities and anisotropies an computed electric potential fields associated with the electrocardiographic forward problem, The model construction was based on the Utah Torso model and included geometry for major anatomical structures such as subcutaneous fat, skeletal muscle, and lungs, as well as for epicardial fatpads, major arteries and veins, and the: sternum, ribs, spine, and clavicles. Measured epicardial potentials served as the electrical source for solutions to the electrocardiographic forward problem computed using the finite element method (FEM). The geometry of the torso model for each simulation was constant, but different combinations of conductivities mere assigned to individual organs or tissues, Comparisons of different conductivity combinations followed one of two basic schemes: 1) a homogeneous torso served as the reference against which we compared simulations with a single organ or tissue and assigned its nominal conductivity, or 2) a fully inhomogeneous torso served as the reference and we removed the effect of individual organs or tissues by assigning it the homogeneous conductivity value, When single inhomogeneities were added to an otherwise homogeneous isotropic model, anisotropic skeletal muscle (at a 15:1 anisotropy ratio) and the right and left lung had larger average effects (12.8, 12.7, and 12.1% relative error (RE), respectively) than the other inhomogeneities tested, Our results for removing single inhomogeneities show that the subcutaneous fat, the anisotropic skeletal muscle (with the degree of anisotropy equal to 7:1), and the lungs have larger average imparts on the body surface potential distributions than other elements of the model (with values of 14.9, 12.6, and 11.7% RE, respectively), The results also show that the size of the effect depended strongly on the distribution of epicardial potentials, The results of this study suggest that accurate representation of tissue inhomogeneity has a significant effect on the accuracy of the forward solution, with regions near the torso surface playing a larger role, in general, than those near the heart.Keywords
This publication has 20 references indexed in Scilit:
- Construction Of An Inhomegeneous Model Of The Human Torso For Use In Computational ElectrocardiographyPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Effects of anisotropy and inhomogeneity on electrocardiographic fields: A finite element studyPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1992
- Interpolation on a triangulated 3D surfaceJournal of Computational Physics, 1989
- The effect of torso inhomogeneities on body surface potentials quantified using “tailored” geometryJournal of Electrocardiology, 1989
- Effect of torso boundaries on electric potential and magnetic field of a dipoleIEEE Transactions on Biomedical Engineering, 1988
- Forward and inverse electrocardiographic calculations using resistor network models of the human torso.Circulation Research, 1987
- The Inverse Problem in Electrocardiography: A Model Study of the Effects of Geometry and Conductivity Parameters on the Reconstruction of Epicardial PotentialsIEEE Transactions on Biomedical Engineering, 1986
- The Effects of Thoracic Inhomogeneities on the Relationship Between Epicardial and Torso PotentialsIEEE Transactions on Biomedical Engineering, 1986
- The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model.Circulation Research, 1979
- Qualitative effects of thoracic resistivity variations on the interpretation of electrocardiograms: The low resistance surface layerAmerican Heart Journal, 1968