Abstract
This paper examines the performance of TCP/IP, the Internet data transport protocol, over wide-area networks (WANs) in which data traffic could coexist with real-time traffic such as voice and video. Specifically, we attempt to develop a basic understanding, using analysis and simulation, of the properties of TCP/IP in a regime where: 1) the bandwidth-delay product of the network is high compared to the buffering in the network and 2) packets may incur random loss (e.g., due to transient congestion caused by fluctuations in real-time traffic, or wireless links in the path of the connection). The following key results are obtained. First, random loss leads to significant throughput deterioration when the product of the loss probability and the square of the bandwidth-delay product is larger than one. Second, for multiple connections sharing a bottleneck link, TCP is grossly unfair toward connections with higher round-trip delays. This means that a simple first in first out (FIFO) queueing discipline might not suffice for data traffic in WANs. Finally, while the recent Reno version of TCP produces less bursty traffic than the original Tahoe version, it is less robust than the latter when successive losses are closely spaced. We conclude by indicating modifications that may be required both at the transport and network layers to provide good end-to-end performance over high-speed WANs.

This publication has 20 references indexed in Scilit: