The Nakayama Map and Ramification for Maximally Complete Fields
- 1 August 1974
- journal article
- Published by Canadian Mathematical Society in Canadian Journal of Mathematics
- Vol. 26 (4) , 917-919
- https://doi.org/10.4153/cjm-1974-086-6
Abstract
Let K be a maximally complete valued field and let L be a totally ramified Galois extension of K with Galois group G. Assume (i) the value group quotient of L|K is cyclic and (ii) there exists an unramified cyclic extension of K of the same degree as L. Then there is an isomorphism of Ga onto a subgroup A/N(L×) of K×/N(L×) which maps the ramification group Gi onto AiN(L×)/N(L×) for all i > 0 where Ai = {x ∊ A|v(x ‒ 1) ≧ i}. This generalizes certain results of Local Class Field Theory.Keywords
This publication has 3 references indexed in Scilit:
- Ramification Theory for Valuations of Arbitrary RankCanadian Journal of Mathematics, 1974
- A reciprocity law for maximal fieldsTransactions of the American Mathematical Society, 1966
- Über die Beziehungen zwischen den Faktorensystemen und der Normklassengruppe eines galoisschen ErweiterungskörpersMathematische Annalen, 1936