Some convergence estimates for semidiscrete type schemes for time-dependent nonselfadjoint parabolic equations
Open Access
- 1 January 1981
- journal article
- Published by American Mathematical Society (AMS) in Mathematics of Computation
- Vol. 37 (156) , 327-346
- https://doi.org/10.1090/s0025-5718-1981-0628699-1
Abstract
L 2 {L_2} -norm error estimates are shown for semidiscrete (continuous in time) Galerkin finite element type approximations to solutions of general time-dependent nonselfadjoint second order parabolic equations under Dirichlet boundary conditions. The semidiscrete solutions are defined in terms of given methods for the corresponding elliptic problem such as the standard Galerkin method in which the boundary conditions are satisfied exactly but also methods for which this is not necessary. The results are proved by energy arguments and include estimates for the homogeneous equation with both smooth and nonsmooth initial data.Keywords
This publication has 8 references indexed in Scilit:
- On the Smoothing Property of the Galerkin Method for Parabolic EquationsSIAM Journal on Numerical Analysis, 1982
- Negative Norm Estimates and Superconvergence in Galerkin Methods for Parabolic ProblemsMathematics of Computation, 1980
- Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic EquationsSIAM Journal on Numerical Analysis, 1977
- Interpolated Boundary Conditions in the Finite Element MethodSIAM Journal on Numerical Analysis, 1975
- Rate of Convergence Estimates for Nonselfadjoint Eigenvalue ApproximationsMathematics of Computation, 1973
- The finite element method with Lagrangian multipliersNumerische Mathematik, 1973
- Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sindAbhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 1971
- Equations of parabolic type in a Banach spacePublished by American Mathematical Society (AMS) ,1966