Protein folding and the transfer of hydrocarbons from a dilute aqueous solution to the pure liquid phase are thermodynamically similar in that both processes remove nonpolar surface from water and both are accompanied by anomalously large negative heat capacity changes. On the basis of a limited set of published surface areas, we previously proposed that heat capacity changes (delta C degrees p) for the transfer of hydrocarbons from water to the pure liquid phase and for the folding of globular proteins exhibit the same proportionality to the reduction in water-accessible nonpolar surface area (delta Anp) [Spolar, R.S., Ha, J.H., & Record, M.T., Jr. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8382-8385]. The consequence of this proposal is that the experimental delta C degrees p for protein folding can be used to obtain estimates of delta Anp and of the contribution to the stability of the folded state from removal of a nonpolar surface from water. In this paper, a rigorous molecular surface area algorithm [Richmond, T.J. (1984) J. Mol. Biol. 178, 63-89] is applied to obtain self-consistent values of the water-accessible nonpolar surface areas of the native and completely denatured states of the entire set of globular proteins for which both crystal structures and delta C degrees p of folding have been determined and for the set of liquid and liquefiable hydrocarbons for which delta C degrees p of transfer are known. Both processes (hydrocarbon transfer and protein folding) exhibit the same direct proportionality between delta C degrees p and delta Anp. We conclude that the large negative heat capacity changes observed in protein folding and other self-assembly processes involving proteins provide a quantitative measure of the reduction in the water-accessible nonpolar surface area and of the contribution of the hydrophobic effect to the stability of the native state and to protein assembly.