Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake

Abstract
Systematic differences in ground motion on the hanging wall and footwall during the Northridge earthquake are evaluated using empirical data. An empirical model for the hanging-wall effect is developed for the Northridge earthquake. This empirical model results in up to a 50% increase in peak horizontal accelerations on the hanging wall over the distance range of 10 to 20 km relative to the median attenuation for the Northridge earthquake. In contrast, the peak accelerations on the footwall are not significantly different from the median attenuation over this distance range. Recordings from other reverse events show a similar trend of an increase in the peak accelerations on the hanging wall, indicating that this systematic difference in hanging-wall peak accelerations is likely to be observed in future reverse events.

This publication has 3 references indexed in Scilit: